If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+11x-211=0
a = 2; b = 11; c = -211;
Δ = b2-4ac
Δ = 112-4·2·(-211)
Δ = 1809
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1809}=\sqrt{9*201}=\sqrt{9}*\sqrt{201}=3\sqrt{201}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-3\sqrt{201}}{2*2}=\frac{-11-3\sqrt{201}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+3\sqrt{201}}{2*2}=\frac{-11+3\sqrt{201}}{4} $
| -3p-4(3-3p)=6(p-2)-9 | | 6x+9=-2x-7 | | 420÷d=30;30=d | | (x/2)-7=4 | | 28=6+2j | | 25-4g=1 | | 14+y=-13 | | 1.8v+17.03−17v=-18.3v−14.9 | | 20-4j=12 | | 6.87*3+3x=27.96 | | 9/32=3/4m | | 6.87*3+3x=27,96 | | 6-10w=-84 | | 11x+38=360 | | 3z2+7z+4=0 | | 17=8+3d | | 20-2t=12 | | c-6/7=7 | | 4.8x-5.9=3.7 | | 7(g-79)=77 | | d-63/4=7 | | 8f+12=f=9 | | j/4−2=2 | | 27=-3(b–10) | | 6.87*3+3x=13,25 | | 6.87*3+3x=14,25 | | 6(x-6)-8(x+2)=8 | | 6.87*3+3x=13.25 | | 1,4+2,1x=6.4-1,9x | | 6.87*3+3x=13-25 | | h+17/8=6 | | 3+(0.25)a=31 |